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Abstract. In several preceding studies, the explicitly covariant formulation of light-front dynamics was
developed and applied to many observables. In the present study we show how in this approach the
renormalization procedure for the first radiative corrections can be carried out. It requires separating
out the contributions which depend on the orientation of the light-front plane. We calculate the electron
self-energy as well as the renormalized QED γe− → e− and γ → e+e− vertices. Our renormalization
procedure is confirmed by recovering, in a straightforward way, the well-known analytical results obtained
in the Feynman approach.

1 Introduction

Light-front dynamics [1] is a theoretical approach which
has been successfully applied to relativistic composite sys-
tems. The two field-theoretical forms of this scheme are:
the standard light-front dynamics (LFD) [2] and explic-
itly covariant light-front dynamics (CLFD) [3]. While the
standard LFD deals with the state vector defined on the
plane t+z = 0, this plane is defined in CLFD by the invari-
ant equation ω·x = 0, where ω is a four-vector with ω2 =
0. The particular choice of the four-vector ω = (1, 0, 0,−1)
turns CLFD into standard LFD.

In this article, we apply CLFD to the calculation, in
first order perturbation theory, of the fermion self-energy
and of the QED γe− → e− and γ → e+e− vertices. We
shall illustrate in detail the calculation technique of CLFD
in order to point out its differences and similarities with re-
spect to standard LFD and to the Feynman techniques. As
expected from general principles, the LFD amplitude may
depend on the orientation of the light-front plane. This de-
pendence manifests itself as a lack of explicit covariance.
This is true in particular for off-energy shell amplitudes,
or for approximate on-energy shell physical amplitudes. In
CLFD this dependence is given in a covariant and well-
defined manner, in terms of the four-vector ω. We recall
that in LFD, all the particles, even in the intermediate
states, are on-mass shell, whereas the amplitude may be
off-energy shell.

a e-mail: dugne@clermont.in2p3.fr
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c e-mail: mathiot@in2p3.fr

The question of renormalization in Hamiltonian dy-
namics has already been addressed a long time ago [4]
(see also [5]). The perturbative renormalization in stan-
dard LFD has already been done [6] using various meth-
ods. In these approaches, it has been shown that the nec-
essary counterterms should be non-local. In our covariant
approach this nonlocality manifests itself only in the terms
depending on the orientation of the light-front plane.
These terms can be explicitly removed in order to cal-
culate the physical amplitude. We will show that after
their separation, the renormalization of the ω-independent
part of the amplitude is carried out in a very simple way,
like in the Feynman approach, and does not require any
non-local counterterms. We then find that the on-energy
shell electromagnetic vertex in CLFD coincides with the
on-mass shell Feynman vertex. The same is true for the
electron self-energy. Let us emphasize here that off-energy
shell amplitudes in CLFD do not coincide with the corre-
sponding off-mass shell Feynman amplitudes. The coinci-
dence of the LFD amplitudes with the Feynman ones takes
place for on-shell amplitudes only. An alternative method
of renormalization, using the so-called “minus regulariza-
tion”, has been proposed in [7].

The plan of this article is the following. The renor-
malized electron mass operator is calculated in Sect. 2. In
Sect. 3, the calculation of the corrections of order e2 to the
electron electromagnetic vertex in CLFD is carried out. In
Sect. 4 we apply our formalism to the vertex γ → e+e− for
the threshold value of the photon momentum Q2 = 4m2.
Section 5 contains our concluding remarks. Some technical
details are given in Appendices A and B.
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Fig. 1. The electron self-energy graph. The dashed line rep-
resents the spurion line, as explained in detail in [3]

2 The electron self-energy

In our explicitly covariant formulation of LFD we are able
to follow very closely the standard procedure of renormal-
ization of the fermion self-energy in perturbation theory.
The self-energy diagram is shown in Fig. 1.

The general spin structure of the self-energy is very
simple. It is given by

Σ(p, ω) = A1(p2) + B1(p2)
p̂

m
+ C1(p2)ω̂, (1)

where p̂ = pµγ
µ and similarly for ω̂, m is the electron

mass, p = p1 − ωτ1 is the total momentum entering the
diagram, p1 is the external fermion momentum, with p2

1 =
m2, and ωτ1 is the external spurion momentum. The co-
efficients A1, B1, C1 are scalar functions of p2 = m2 −
2(ω·p)τ1 only.

The ω-dependent structures should not contribute to
observables, like for instance the renormalized mass. In
higher order calculation, the term C1(p2)ω̂ in (1) may
be contracted with other spin structures to give an ω-
independent contribution. In the perturbative calculation
of the lowest order however, this ω-dependence survives.
We introduce therefore the amputated self-energy Σ̃(p)
defined by

Σ̃(p) = Σ(p, ω) − C1(p2)ω̂ = A1(p2) + B1(p2)
p̂

m
. (2)

The standard procedure of renormalization of Feynman
diagrams relies on two counterterms: the mass countert-
erm δm2 and the wave function renormalization propor-
tional to Z2 [8,9]. Alternatively, and following [10], we
can define the renormalized self-energy ΣR(p) as the part
of Σ̃(p) which is of second order in the variable (p̂ − m).
Without loss of generality, we can rewrite Σ̃(p) in the form

Σ̃(p) = A0 + (p̂ −m)B0 + ΣR(p). (3)

Here A0, B0 are constants (they do not depend on p2),
and ΣR(p) is the renormalized self-energy written as

ΣR(p) = (p̂ −m)2M(p), (4)

where the matrix M(p) can be represented as

M(p) = a + (p̂ + m)b. (5)

The self-energy diagram can easily be iterated to all
orders. Supplemented with the adequate contact terms, as
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Fig. 2. Iteration of the self-energy contribution, with the
corresponding contact interactions (represented by a dot)

indicated on Fig. 2, it leads to the renormalized fermion
propagator. This one reads

1
p̂ −m − (p̂ −m)2M(p)

.

It has the same pole and the same residue at p̂ = m as
the free propagator of the physical fermion.

The explicit calculation of the renormalized fermion
self-energy is now straightforward. According to the rules
of CLFD, the electron self-energy shown on Fig. 1 has the
form

−Σ(p, ω) = e2
∫

θ(ω · k)δ(k2 −m2)

×γµ(k̂ − ω̂τ + m)γν(−gµν)θ(ω · (p − k))

×δ((p + ωτ − k)2 − µ2)
dτ

τ − i0
d4k

(2π)3

= − e2

(2π)3

∫
4m − 2k̂ + 2ω̂τ

s− p2

d2R⊥dx
2x(1 − x)

. (6)

We introduce here the photon mass µ for infrared regu-
larization. We use for our calculation the Feynman gauge.
Since our formulation is explicitly covariant, and we do
not rely on the special choice of light-front coordinates,
this choice of gauge is of particular interest as compared
to the light-cone gauge A·ω = 0. It has also the great ad-
vantage to enable a direct comparison with the standard
textbook result using Feynman diagrams in the Feynman
gauge.

The term ω̂τ in (6) contributes to C1(p2)ω̂ only and
can be omitted in the calculation of Σ̃(p). In (6), τ =
(s−p2)/(2ω·p), and s is the invariant mass of the interme-
diate photon and electron. It is convenient to introduce the
variable R = k−xp with x = ω·k/ω ·p. As usual (see, e.g.,
[3]), we represent the spatial part of R as R = R‖ + R⊥,
where R‖ is parallel to ω and R⊥ is orthogonal to ω.
Since, by definition of R, R·ω = R0ω0 − R‖·ω = 0, it fol-
lows that R0 = |R‖|, and, hence, R2

⊥ = −R2 is invariant.
In this way we find

s =
R2

⊥ + m2

x
+

R2
⊥ + µ2

1 − x
, k·p =

R2
⊥ + m2

x
− 1

2
xp2,

and the phase-space volume is given by d3k/εk = d2R⊥
dx/x.

Now, starting from (6), we can calculate ΣR(p) and the
scalar coefficients a and b in (5). Knowing Σ(p, ω) from
(6), we calculate the coefficients A1, B1 in (1) and find
Σ̃(p) by (2). Comparing (2) with (3), we express A0, B0
through A1, B1 for p2 = m2. Using again the representa-
tion (3) for Σ̃(p), we finally obtain the functions a, b, which
determine the self-energy (4), through A1(p2), B1(p2) and
A0, B0. The details of the calculation are given in Ap-
pendix A. For the functions a and b we find
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a =
α

4πm
1

(1 − ρ)

(
1 − 2 − 3ρ

1 − ρ
log ρ

)
,

b = − α

2πm2ρ

[
1

2(1 − ρ)

(
2 − ρ +

ρ2 + 4ρ − 4
1 − ρ

log ρ
)

+ 1 + log
µ2

m2

]
, (7)

where

ρ =
m2 − p2

m2 .

With these expressions for a and b the renormalized mass
operator can be written

ΣR(p) = (p̂ −m)2M(p) = (p̂ −m)2[a + (p̂ + m)b]. (8)

It exactly coincides with the standard result given for in-
stance in [8,10], using the same gauge. As already men-
tioned, the ω-dependent term C1(p2)ω̂ may give an ω-
independent contribution to the total physical amplitude
in higher order calculations, when Σ(p) enters as a part of
a more complex diagram. It should therefore be considered
in that case, and renormalized. This will be the subject of
a forthcoming publication dealing with non-perturbative
renormalization.

Since the forms of the fermion and antifermion prop-
agators are different in LFD (they contain (p̂ + m) for a
fermion and −(p̂−m) for an antifermion), the form of the
self-energy is also different. However, there is no need to
repeat the calculation. The propagators differ by the re-
placement p̂ → −p̂; therefore the renormalized antifermion
self-energy ΣR(p) can be found from the fermion one, (8),
by the same replacement:

ΣR(p) = ΣR(−p) = (p̂ + m)2[a− (p̂ −m)b], (9)

where a, b are the same as for the fermion self-energy, and
given by (7).

3 The electron electromagnetic vertex

3.1 The anomalous magnetic moment of the electron

The anomalous magnetic moment of the electron is an-
other example of a higher order calculation in QED. Its
calculation gives a finite result and does not require renor-
malization.

The spin 1/2 electromagnetic vertex in CLFD has the
general form

Jρ(q) = ū(p′)Γρu(p), (10)

where q = p′ − p. We shall denote Q2 = −q2. We choose
also ω.q = 0, which is always possible for Q2 ≥ 0. This
implies that the electron scattering process, source of the
“external” virtual photon, can be disconnected from the
process under investigation [3], at least in the Feynman
gauge we are considering in this study. This insures that

this external photon can be assimilated to a “physical”
particle.

Due to the explicit covariance of our approach, the
vertex operator Γρ, according to [11], can be decomposed
into

Γρ = F1γρ +
iF2

2m
σρνq

ν + B1

(
ω̂

ω·p − 1
(1 + η)m

)
Pρ

+B2
m

ω·pωρ + B3
m2

(ω·p)2
ω̂ωρ, (11)

where σρν = i(γργν − γνγρ)/2 and η = Q2/(4m2). The
electromagnetic vertex (10) is gauge invariant since Jρq

ρ

= 0 (with the condition ω·q = 0). The possible non-
gauge-invariant terms are forbidden by T -invariance. The
anomalous magnetic moment is the value of F2(Q2) for
Q2 = 0.

The physical form factors F1 and F2 can easily be ex-
tracted from the vertex function Γρ. To this end, we mul-
tiply Jρ by [ūσ′

(p′)γρuσ(p)]∗, [ūσ′
(p′)iσρνqν/(2m)uσ(p)]∗,

etc. and sum over polarizations. After taking the trace, we
obtain the following quantities:

c1 = Tr[Oργ
ρ], c2 = Tr[Oρiσρνqν ]/(2m),

c3 = Tr[Oρ(ω̂/ω·p − 1/(1 + η)m)]P ρ,

c4 = Tr[Oρ]ωρm/ω·p, c5 = Tr[Oρω̂]ωρm2/(ω·p)2, (12)

where

Oρ = (p̂′ + m)Γρ(p̂ + m)/(4m2). (13)

With the decomposition (11) of Γρ, we get a linear system
of five equations for F1, F2, B1−3 with the inhomogeneous
part determined by c1−5. Solving this system relative to
F2, we find

F2 =
1

4η(1 + η)2
[
(c3 + 4c4 − 2c1)(1 + η) + 2(c1 + c2)

−2(c5 + c4)(1 + η)2
]
. (14)

In spite of η in the denominator in (14), there is no sin-
gularity at Q2 = 0.

In the usual formulation of LFD on the plane t+z = 0,
the form factors of spin 1/2 systems are found from the
plus-component of the current, i.e., in our notation, from
the contraction of Jρ in (10) with ωρ. This contraction
is enough to get rid of the contributions proportional to
B2,3, but not of the term proportional to B1. The form
factors F ′

1 and F ′
2 inferred in this way are thus given by

J·ω = ū′
[
F1ω̂ +

iF2

2m
σρνω

ρqν + 2B1

(
ω̂ − ω·p

(1 + η)m

)]
u

≡ ū′
[
F ′

1γρ +
iF ′

2

2m
σρνq

ν

]
u ωρ, (15)

where

F ′
1 = F1 +

2ηB1

1 + η
, F ′

2 = F2 +
2

1 + η
B1. (16)
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Fig. 3. Radiative corrections to the electromagnetic vertex of
the electron. For simplicity, we have not indicated, in the first
two diagrams, the spurion lines and the momenta

The B1 expression can be found from the above men-
tioned system of equations, leading to

B1 = − 1
8η(1 + η)

[
(c3 + 4c4 − 2c1)(1 + η)

+2(c1 + c2) − 4c5(1 + η)2
]
. (17)

Substituting F2 from (14) and B1 from (17) into (16) for
F ′

2, we get

F ′
2 = (c5 − c4)/(2η). (18)

Of course, in a given order of perturbation theory, both
methods for calculating the form factors, by (14) and (18),
should give the same result. This means we should find
B1 = 0. We shall see below that this is indeed the case.

Let us first calculate the form factor F ′
2, for Q2 = 0.

The radiative corrections to the electromagnetic vertex
are composed of three irreducible contributions shown on
Fig. 3. The first two diagrams involve the renormalized
self-energy calculated in Sect. 2. For on-energy shell ex-
ternal electrons, they result in the renormalized electron
mass, as usual. The third one can easily be calculated ac-
cording to the rules of the graph techniques [3]. It has the
form

ū(p)Γ ρu(p) = e2
∫

ū(p)γµ(p̂ − k̂ + m)θ(ω·(p − k))

×δ((p + ωτ1 − k)2 −m2)
dτ1

τ1 − i0
×γρ(p̂ − k̂ + m)θ(ω·(p − k))

×δ((p + ωτ2 − k)2 −m2)
dτ2

τ2 − i0
γνu(p)

×(−gµν)θ(ω·k)δ(k2 − µ2)
d4k

(2π)3
. (19)

The factor p̂ − k̂ = k̂1 − ω̂τ1 = k̂2 − ω̂τ2 includes the
contact terms −ω̂τ1 and −ω̂τ2, as explained in [3]. For the
regularization of subsequent calculations, we introduced
in (19) the photon mass µ, although it is not necessary in
the present subsection.

Integrating over τ1, τ2 and k0, we get

ū(p)Γ ρu(p) = e2
∫

ū(p)Gρu(p)
(s−m2)2(1 − x)2

d3k

2εk(2π)3
, (20)

where s = (k+ k1)2 = (k+ k2)2, x = ω·k/ω·p and we note

Gρ = −γµ(p̂ − k̂ + m)γρ(p̂ − k̂ + m)γµ. (21)

The integrands for the scalar functions c1−5 are repre-
sented in terms of the scalar products between the four-
momenta p, k and ω. The scalar product p·k is given by

p·k = µ2/2 + (1 − x)(s−m2)/2,

whereas the scalar products ω·k and ω·p always appear in
the ratio x, with 0 ≤ x ≤ 1.

In terms of R2
⊥ and x, the variable s can be written

s =
R2

⊥ + µ2

x
+

R2
⊥ + m2

1 − x
. (22)

Substituting these expressions into (20), we find (for µ =
0)

ū(p)Γ ρu(p) =
α

4π2

∫
ū(p)Gρu(p)

xdxd2R⊥
(R2

⊥ + xm2)2
, (23)

where we denote α = e2/4π. To calculate F ′
2 by (18) (for

η → 0), we substitute Γρ from (23) into (13) (for p′ = p)
and then into expressions (12) for c4 and c5. Calculating
the traces, we get

F ′
2(0) =

α

4π2

∫
4m2x(1 − x)

xdxd2R⊥
(R2

⊥ + xm2)2
. (24)

We thus obtain the well-known result for the anomalous
magnetic moment of the electron:

F ′
2(0) =

α

2π
. (25)

Now consider the form factor F2 calculated after sep-
aration of the ω-dependent terms. According to (16), it is
related to F ′

2 by F2(0) = F ′
2(0) − 2B1(0). From (17), for

Q2 = 0, we find the following expression for B1:

B1(0) =
α

2π

∫
[m2(2 − x)x2 − 2R2

⊥(1 − x) − µ2(2 − x)]
[R2

⊥ + m2x2 + µ2(1 − x)]2

×R⊥dR⊥dx, (26)

which is logarithmically divergent. We regularize it using
the Pauli–Villars method, i.e., the photon propagator is
replaced by

1
k2 − µ2 → 1

k2 − µ2 − 1
k2 − Λ2 . (27)

In the absence of an infrared singularity we can put in
(27) µ = 0. Hence, the regularized expression for B1 reads

Breg
1 = B1(µ = 0) −B1(µ = Λ).
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Integrating over R⊥, we get

Breg
1 = − α

4π
(28)

×
∫ 1

0
dx

d
dx

[
x(2 − x) log

(
Λ2(1 − x) + m2x2

m2x2

)]
.

After integration over x we get Breg
1 = 0 for any value

of Λ. This clearly shows that both methods to calculate
the anomalous magnetic moment of the electron give the
same result.

3.2 The renormalized electron charge

In order to calculate the radiative correction to the form
factor F1, we have to renormalize the charge. The renor-
malization means that the Lagrangian contains a coun-
terterm of the form

Z1ψ̄γ
ρψAρ;

hence, the amplitude Jρ is replaced by

Jρ → Jρ
ren = Jρ − Jρ

0 , (29)

where

Jρ
0 = Z1ū(p′)γρu(p).

The renormalization procedure is described in many
textbooks, see for example [8–10]. In order to find Z1,
one must calculate the amplitude ū(p)Γ ρu(p) from the
diagram of Fig. 3. The value of Z1 is in fact just the form
factor F1(0) determined by this diagram. For p = p′ the
general decomposition (10) turns into

ū(p)Γ ρu(p) = Z1ū(p)γρu(p) + Z ′ω
ρm

ω·p ū(p)u(p), (30)

where Z1 = F1(0) and Z ′ = B2(0) + B3(0).
From (30) the constant Z1 is given by

Z1 =
1

4ω·pTr [ωρΓ
ρ(p̂ + m)] . (31)

The vertex Γ ρ is determined by (19) and is reduced to
(20). For regularization purposes, we should now keep the
photon mass µ finite. From (31) we find

Z1 =
α

(2π)3

∫
d2R⊥

∫ 1

0

[
R2

⊥ + m2(−2 + 2x + x2)
]
x

[R2
⊥ + m2x2 + µ2(1 − x)]2

dx.

(32)

The subsequent calculation is straightforward. We calcu-
late Z1(µ,L) for a fixed upper limit L of the variable R⊥ in
the integral (32), take the difference Z1(µ,L) − Z1(Λ,L),
take the limit L → ∞ and then calculate the limits µ → 0
and Λ → ∞. We then obtain

Z1(µ → 0, Λ → ∞) =
9α
8π

+
α

2π
log
(
µ2

m2

)

�q k1

p′

k

p

ωτ

ωτ2

ωτ1

ωτ ′

Fig. 4. Light-front time ordered graph for γ → e+e−. A
similar diagram with the opposite time ordering for the photon
exchange should be added

+
α

4π
log
(
Λ2

m2

)
. (33)

This expression exactly coincides with the expression
found in the Feynman formalism [12]. We emphasize that
this result for Z1 is obtained for the physical part of the
full vertex (30), after separating out the unphysical term
proportional to Z ′ωρ. The latter term can be disregarded;
there is no need to calculate it.

4 Application to the vertex γ → e+e−

As a direct application of the preceding calculation, let us
now consider the electromagnetic transition γ → e+e−,
when the photon is off-energy shell. This vertex is of par-
ticular interest since it can directly be used in the cal-
culation of the decay width of orthomuonium into e+e−
(with the replacement of the initial e+e−-pair by µ+µ−).
In the Weisskopf–Van Royen limit, the decay width is pro-
portional to the elementary vertex µ+µ− → γ (or, equiv-
alently, to γ → µ+µ−), where the µ+µ−-pair originates
from the muonium wave function with zero relative mo-
mentum, i.e. with pµ+ = pµ− = p. This process has also
a direct application in hadronic physics, for the leptonic
decay width of charmonium states [13,14].

4.1 Spin structure

The amplitude of the process γ → e+e− is shown in Fig. 4.
We consider below this amplitude for the e+e− state on-
energy shell, i.e., with τ ′ = 0 in Fig. 4. Moreover, we take
the e+e− c.m. energy equal to 2m, which corresponds to
Q2 = (q−ωτ)2 = −2(q·ω)τ = 4m2. The incoming photon
is thus off-energy shell, as it is for the electromagnetic
form factors discussed in Sect. 3.

The amplitude for this process depends on the four-
vectors p and ω. Its general structure thus reads

ū(p)Mρv(p) = Aū(p)γρv(p) + B
pρ

ω·p ū(p)ω̂v(p)

+C
ωρm2

(ω·p)2
ū(p)ω̂v(p). (34)

Here v(p) is the positron spinor. The constant A in (34)
is the value of the form factor F1(Q2) at Q2 = 4m2. One
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can also construct the structure σρβωβ/ω·p, but it is not
independent, since

im
ω·p ū(p)σρβωβv(p) = ū(p)γρv(p) − pρ

ω·p ū(p)ω̂v(p).

Multiplying (34) on the left by u(p) and on the right
by v̄(p) and summing over polarizations, we get the fac-
tors

∑
λ u(p)ū(p) = (p̂ + m),

∑
λ v(p)v̄(p) = (p̂ − m). We

introduce therefore the quantity

M̃ρ = (p̂ + m)Mρ(p̂ −m), (35)

and calculate the following traces:

T1 ≡ 1
16m2 Tr

[
M̃ργρ

]
= (−3A + C)/2,

T2 ≡ 1
16m2 Tr

[
M̃ρω̂

] pρ

ω·p = (B + C)/2,

T3 ≡ 1
16m2 Tr

[
M̃ρω̂

] ωρm
2

(ω·p)2
= (A + B)/2. (36)

We can thus find the coefficients which determine the am-
plitude (34):

A = T2 − T1 − T3,

B = T1 − T2 + 3T3,

C = −T1 + 3T2 − 3T3. (37)

Below we will call A the “physical amplitude”, in analogy
with the form factor calculation of Sect. 3.

4.2 The physical amplitude A

The amplitude corresponding to the diagram of Fig. 4 is
given by the rules of the graph techniques [3] and writes

ū(p)Mρ
1 v(p′) = e2

∫
ū(p)γµ(k̂ + m)θ(ω·k)

×δ(k2 −m2)
d4k

(2π)3

×γρ
(
m − (Q̂− k̂)

)
θ(ω·(Q− k))

×δ
(
(Q− k + ωτ2)2 −m2) dτ2

τ2 − i0
×γνv(p′)(−gµν)
×δ
(
(p − ωτ ′ + ωτ1 − k)2 − µ2)

×θ(ω·(p − k))
dτ1

τ1 − i0
. (38)

where Q = q−ωτ . Note that the fermion and antifermion
propagators in LFD differ from each other. The propaga-
tor (k̂+m) in (38) corresponds to the electron, whereas the
propagator

(
m − (Q̂− k̂)

)
corresponds to the positron.

The factor m − (Q̂ − k̂) = m − (k̂1 − ω̂τ2) incorpo-
rates the difference k̂1 − ω̂τ2 and, therefore, takes into ac-
count the contact term −ω̂τ2. We consider in this section

the case Q2 = 4m2, relevant for the decay width of the
positronium, so that p′ = p, τ ′ = 0 and so the two graphs
corresponding to the two different time orderings should
give the same contribution Mρ = Mρ

1 + Mρ
2 = 2Mρ

1 .
After integration over τ1 and τ2, the amplitude (38) is

given by

ū(p)Mρ
1 v(p)

= −e2
∫

ū(p)γµ(k̂ + m)γρ
(
m − (Q̂− k̂)

)
γµv(p)

× θ(ω·(p − k))θ(ω·(Q− k))θ(ω·k)

(s12 −Q2)
(

1 − ω·k
ω·Q

)
(s123 −Q2)

(
ω·p − ω·k

ω·Q
)

× d3k

2εk(2π)3
, (39)

where

s12 −Q2 = 2(ω·Q)τ2, s123 −Q2 = 2(ω·Q)τ1,

and

s12 = (k + k1)2 =
R2

k⊥ + m2

xk
+

R2
k⊥ + m2

1 − xk
,

s123 = (k + k2 + p)2

=
R2

k⊥ + m2

xk
+

R2
k1⊥ + µ2

xk1

+
R2

p′⊥ + m2

xp′

=
R2

k⊥ + m2

xk
+

R2
k⊥ + µ2

1/2 − xk
+ 2m2. (40)

Like in the previous sections, we define above the variables
Rl = l − xlQ with xl = ω·l/ω·Q, where l is either k, k1 or
p′. At the threshold Q2 = 4m2, we have Rp′⊥ = 0 and
xp′ = 1/2 in the variable s123. We thus find

M̃ρ = −2
e2

(2π)3

∫
d2R⊥ (41)

×
∫ 1/2

0

Oρ

(s12 − 4m2)(1 − x)(s123 − 4m2) (1/2 − x)
× dx

2x
,

where

Oρ = (p̂ + m)γµ(k̂ + m)γρ
(
m − (Q̂− k̂)

)
γµ(p̂ −m).

(42)

The amplitude M̃ρ is connected to Mρ by (35). The factor
2 in (42) results from the sum of the two amplitudes M1
and M2. In order to find the coefficients A,B,C which de-
termine the amplitude (34), we substitute M̃ρ into (36),
(37), regularize the expression by the Pauli–Villars pre-
scription

A → A(µ) −A(Λ),

(and similarly for B,C), and take the limits µ → 0, Λ →
∞. The details of the calculation are given in Appendix B.
The final expression for A is then

A =
αm

µ
− 7α

8π
+

α

2π
log
(
µ2

m2

)
+

α

4π
log
(
Λ2

m2

)
. (43)
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This expression exactly coincides with that calculated in
the Feynman formalism [12].

The integral for B(µ) converges and does not depend
on µ:

B(µ) = − α

4π
. (44)

The amplitude regularized à la Pauli–Villars is determined
by the difference Breg = B(µ)−B(Λ). It is therefore zero.

From (43) and (33) we recover the renormalized am-
plitude

Aren = A − Z =
αm

µ
− 2α

π
, (45)

which coincides with the result found in the Feynman
approach [12]. It contains the term αm/µ, correspond-
ing to an infrared singularity. This infrared singularity is
well known. For the calculation of the radiative correc-
tion to the leptonic decay width of charmonium states for
instance, it is properly accounted for when the Coulomb
interaction which gives rise to the two-body wave function
is taken care of [12,14].

The calculation of C gives a divergent result even after
a single Pauli–Villars regularization. However, C is the co-
efficient in front of the term ωρūω̂u which is proportional
to ωρ.

In all perturbative processes where the e+e−-pair is
on-energy shell, the amplitude A gives, by definition, the
physical amplitude. For the leptonic decay width of char-
monium states [13] in the Weisskopf–Van Royen approxi-
mation we considered in this chapter, one can easily check
that, according to (15)–(23) in this reference, a vertex fac-
tor of the form (34) contributes only through the A term.
The calculation of the decay width beyond this approxi-
mation will be investigated in a forthcoming publication
[14].

5 Conclusion

The understanding of perturbative renormalization in
QED is an unavoidable step before studying more subtle
systems like QCD. While this perturbative renormaliza-
tion is now a textbook section for the standard formula-
tion of field theory using Feynman graph techniques, it
is not as well understood in light-front quantization. The
main reason is the difficulty to exhibit the covariant struc-
ture of the electromagnetic vertex and electron self-energy
since standard LFD explicitly breaks covariance.

We have shown in this study that the covariant formu-
lation of LFD is a powerful tool to make the link between
LFD and Feynman approaches. The explicit covariance
of our formulation enables us to exhibit the relativistic
structure of the electron self-energy as well as the elec-
tromagnetic vertex in QED. We are thus in a position to
extract, after renormalization, the finite physical contri-
bution from the infinite amplitude. To do that, we have
to know the dependence of the amplitudes on the orien-
tation, ω, of the light front. This is trivial in CLFD. In

the standard formulation of LFD, this dependence can-
not always be disentangled from the physical part of the
amplitude.

The finite physical amplitude we found in our approach
for the electron self-energy, the electromagnetic vertex,
and the γ → e+e− amplitude agree thus with the stan-
dard textbook results. This agreement, in the CLFD ap-
proach, was obtained using the Feynman gauge and, thus,
confirms the possibility to use this gauge in our covariant
formulation. Though this agreement is, of course, expected
for the correct calculation in any gauge, it is not trivial,
since the renormalization procedure in CLFD necessitates
the separation of ω-dependent structures in the decom-
position of the general amplitude, as given for instance in
(11) and (34). These structures are absent in the Feynman
approach. The agreement of both calculations is a strong
test of our procedure. It allows us to safely apply our pro-
cedure to the light-front off-energy shell amplitudes, which
do not coincide with the Feynman amplitudes.

We emphasize that in order to reproduce these results,
a covariant regularization of divergences (Pauli–Villars in
the present study) is important. The attempt to regularize
the integrals by a cut-off in the variable R⊥, for instance,
allows us of course to work with finite integrals. It gives
finite, but wrong, renormalized results.

In the present study, we were interested in the renor-
malization of the fermion self-energy and the electromag-
netic vertex only and therefore we did not analyze the vac-
uum polarization contribution (photon self-energy), keep-
ing also in mind an application to the calculation of the
relativistic gluon radiative correction to the J/ψ leptonic
decay width.

The renormalization of off-energy shell vertex is ap-
plied to the latter process in [14]. The QED vertex e+e− →
γ, corrected by a color factor, coincides with the QCD ver-
tex q+q− → γ. This calculation, beyond the non-
relativistic approximation, requires the renormalization of
the amplitude q+q− → γ, which is off-energy shell not only
in the photon leg, but also in the q+q− state. The vacuum
polarization is in that case an electromagnetic correction
to this strong process and can therefore be neglected.

We have considered in this study a few examples of the
first order perturbative renormalization in CLFD. These
examples, as well as a successful application of CLFD to
the analysis of the cutoff dependence of the binding energy
in the Yukawa model [15], give an indication that the for-
malism of CLFD can be useful for non-perturbative stud-
ies too. The question of non-perturbative renormalization
for scalar particles, will be addressed in a forthcoming
publication [16].
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Appendix

A Calculation of a and b

According to (4) and (5), the self-energy ΣR(p) is deter-
mined by the scalar functions a and b. As we will see
below, a and b are determined by the coefficients A1(p2)
and B1(p2) in the general decomposition (1) and by their
combinations in the limit p2 → m2.

From (1) we find the coefficients A1(p2) and B1(p2):

A1 =
1
4

Tr[Σ(p)], B1 =
m

4ω·pTr[Σ(p)ω̂]. (46)

Substituting here (6) for Σ(p) we get

A1(p2) =
αm

π2 (47)

×
∫

πdR2
⊥dx

R2
⊥ + (1 − x)m2 + x[µ2 + (1 − x)p2]

,

B1(p2) = −αm

2π2 (48)

×
∫

πdR2
⊥xdx

R2
⊥ + (1 − x)m2 + x[µ2 + (1 − x)p2]

.

These integrals diverge logarithmically.
Comparing (1) with (3) and taking into account (4),

we find

A1(p2) + B1(p2)
p̂

m
= A0 + (p̂ −m)B0 + (p̂ −m)2M(p).

(49)

From here we can express the constants A0 and B0
through A1 and B1:

A0 =
1

4m
Tr
[(

A1(p2) + B1(p2)
p̂

m

)
(p̂ + m)

]
p2=m2

= A1(m2) + B1(m2) (50)

B0 =
1

4m(p2 −m2)
(51)

× Tr
[(

A1(p2) + B1(p2)
p̂

m
−A0

)
(p̂ + m)2

]
p2→m2

.

We thus obtain

A0 =
αm

2π2

∫
(2 − x)πdR2

⊥dx
R2

⊥ + (1 − x)2m2 + xµ2 , (52)

B0 = − α

2π2

∫
x[R2

⊥ − (3 − 4x + x2)m2 + xµ2]πdR2
⊥dx

[R2
⊥ + (1 − x)2m2 + xµ2]2

.

(53)

These integrals also diverge logarithmically.
From (49), and taking into account (5) for M(p), we

get

(p̂ −m)2(a + (p̂ + m)b)

= A1(p2) + B1(p2)
p̂

m
−A0 − (p̂ −m)B0.

This allows us to find a and b:

a =
1

4p2(p2 −m2)
Tr

[(
A1(p2) + B1(p2)

p̂

m

−A0 − (p̂ −m)B0

)
(p̂ + m)p̂

]

=
A1(p2) + B1(p2) −A0

p2 −m2 ,

b =
1

4p2(p2 −m2)2
Tr

[(
A1(p2) + B1(p2)

p̂

m

−A0 − (p̂ −m)B0

)
(p̂ + m)2p̂

]

=
2m(A1(p2) −A0)

(p2 −m2)2
+

(p2 + m2)B1(p2)
m(p2 −m2)2

− B0

p2 −m2 . (54)

Substituting here the above expressions for A1, B1, A0 and
B0, we get

a =
αm

2π

∫
x(2 − 3x + x2)

[R2
⊥ + m2(1 − x)2]

× dR2
⊥dx

[R2
⊥ + m2(1 − x)(1 − (1 − ρ)x)]

. (55)

b = − α

2π

∫
x2(1 − x)

[R2
⊥ + m2(1 − x)2 + µ2x]2

× [R2
⊥ −m2(3 − 4x + x2)]dR2

⊥dx
[R2

⊥ + m2(1 − x)(1 − (1 − ρ)x) + µ2x]
. (56)

We omitted in a the photon mass µ, since that integral
has no infrared divergence, and introduced the notation
ρ = (m2−p2)/m2. Integrating over R2

⊥ and x and keeping
in b the leading term in log(µ2/m2) only, we obtain (7).

One can similarly calculate the coefficient C1 deter-
mining the ω-dependent part of Σ(p). It is given by

C1(p2) =
1

4ω·pTr
[
Σ(p)

(
p̂ − p2ω̂

ω·p
)]

= − α

4π2ω·p (57)

×
∫

[2R2
⊥ + m2(2 − 3(1 − ρ)x2)]πdR2

⊥dx
[R2

⊥ + m2(1 − x)(1 − (1 − ρ)x) + µ2x]x
.

It is quadratically divergent in the variable R⊥ and is
logarithmically divergent at x = 0. Note that the standard
Pauli–Villars regularization is not enough to make it finite.
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B Calculation of A, B and C

As explained in Sect. 4.2, we substitute M̃ρ into (36), (37)
in order to find the coefficients A,B,C determining the
amplitude (34). We thus find

(A,B,C) = − 8πα
(2π)3

∫
d2R⊥

×
∫ 1/2

0

(a, b, c)
(s12 − 4m2)(1 − x)(s123 − 4m2)(1/2 − x)

×dx
2x

, (58)

with

a = t2 − t1 − t3

=
1

16m2

{
Tr [Oρω̂]

pρ

ω·p − Tr [Oργρ]

− Tr
[
M̃ρω̂

] ωρm
2

(ω·p)2

}

= − 1
x

[
R2

⊥(1 − 2x) + m2(1 + 4x2)
]
,

b = t1 − t2 + 3t3

=
1
x

[
R2

⊥(1 − 4x) + m2(1 − 2x)2(1 + 2x)
]
,

c = −t1 + 3t2 − 3t3 (59)

= − 1
4m2x2

[
R4

⊥ + 2m2R2
⊥(1 − 8x2) + m4(1 − 4x2)2

]
.

To calculate the traces (59), we need the following scalar
products:

k·Q = 2m2 + (1 − x)(s12 − 4m2), k·p = k·Q/2,
p·Q = Q2/2 = 2m2. (60)

Substituting (59) into (58), we find

A(µ) =
8πα

(2π)3

∫
d2R⊥

×
∫ 1/2

0

[
R2

⊥(1 − 2x) + m2(1 + 4x2)
]

[R2
⊥ + m2(1 − 2x)2]

× dx
[R2

⊥ + m2(1 − 2x)2 + 2µ2x]
, (61)

B(µ) = − 8πα
(2π)3

∫
d2R⊥

×
∫ 1/2

0

[
R2

⊥(1 − 4x) + m2(1 − 2x)2(1 + 2x)
]

[R2
⊥ + m2(1 − 2x)2]

× dx
[R2

⊥ + m2(1 − 2x)2 + 2µ2x]
, (62)

C(µ) =
4πα

(2π)3

∫
d2R⊥

×
∫ 1/2

0

[
R4

⊥ + 2m2R2
⊥(1 − 8x2) + m4(1 − 4x2)2

]
2m2x [R2

⊥ + m2(1 − 2x)2]

× dx
[R2

⊥ + m2(1 − 2x)2 + 2µ2x]
. (63)

The integral (63) for C, which is the coefficient in front of
the structure proportional to ωρ, diverges quadratically at
R⊥ → ∞ and logarithmically at x = 0. The integral (61)
for A logarithmically diverges at R⊥ → ∞. The integral
(62) for B at R⊥ → ∞ has the asymptotic expression

B(µ) ∝
∫ ∞

0

dR⊥
R⊥

∫ 1/2

0
(1 − 4x)dx.

Since the integral over x is zero, B(µ) is finite.
The regularization of A(µ) proceeds as follows. The

integral over x in A(µ) can be done analytically. In the
Pauli–Villars regularization scheme, we should take the
difference A(µ) − A(Λ) and calculate the convergent in-
tegral over R⊥. Equivalently, but technically easier, we
calculate A(µ,L) with the cutoff L in the variable R⊥,
take the difference A(µ,L) − A(Λ,L) and then take the
limit L → ∞. The result is analytic, but lengthy. In the
limits µ → 0 and Λ → ∞ we obtain (43), which coincides
with the result calculated in the Feynman formalism [12].
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